Quantum physics practice question answers

1. <u>How electron gun creates beam of electrons</u>

Any four from:

- 1. hot filament (1)
- 2. thermionic emission / electrons have enough <u>energy</u> to leave (1)
- 3. anode and cathode $/ \pm$ electrodes [identified] (1)
- 4. E-field **OR** force direction **OR** cause of acceleration (1)
- 5. collimation [eg gap in anode identified as causing beam] (1)
- 6. need for vacuum (1)

Speed of electrons

(eV =)
$$\frac{1}{2} mv^2$$
 (1)
Use of eV [ie substituted or rearranged] (1)
Answer $[1.09 \times 10^7 \text{ m s}^{-1}]$ (1)
 $1.6 \times 10^{-19} \times 340$ (J) = $\frac{1}{2} \times 9.11 \times 10^{-31}$ (kg) $\times v^2$
 $v = 1.09 \times 10^7 \text{ m s}^{-1}$

Definition of term electric field

Region/area/space in which **charge** experiences **force** (1) <u>ertical acceleration of electrons due to field</u> [Bald answer =0]

Use of equation E = V/d (1)

 $E = V/d = 2500 \text{ V} \div 0.09 \text{ m} = 28 \text{ (kV m}^{-1})$

Rearranged equation E = F/q or substitution into it (1)

$$F = Eq = 28\ 000 \times 1.6 \times 10^{-19}$$
 (N) 4.4×10^{-15} (N)

Equation F = ma seen or substitution into it (1)

$$A = F/m = \frac{4.4 \times 10^{-15} (N)}{9.11 \times 10^{-31} (hg)}$$

= 4.9 × 10¹⁵ (m s⁻²) (1) 4
[at least 2 sig fig needed] [No u.e.] [Reverse calculation max 3]

[12]

Max 4

3

1

2.	How ions are accelerated		
	Electric field exists between +, - electrodes (1)		
	\Rightarrow force on ions / force \rightarrow acceleration (1)	2	
	Speed of xenon atom		
	$eV = \frac{1}{2} mv^{2}/eV = E_{k}$ (1)		
	$\Rightarrow \upsilon = \sqrt{2eV/m}$ (1)		
	$=\sqrt{\frac{2\times1.6\times10^{-19}\times(1060+225)}{2.2\times10^{-25}}}\mathrm{ms}^{-1} (1)$		
	$= 4.3 \times 10^4 \text{ m s}^{-1}$ [No u.e.] (1)	4	
	Thrust on space probe		
	Force = rate of change of momentum (1)		
	$= 2.1 \times 10^{-6} \times 43\ 000\ N$ (1)		
	= 0.090 N (1)	3	
	[Using 4×10^4 m s ⁻¹ gives $F = 0.084$ N]		
	Reason for reduced thrust		
	Xenon ions attracted back OR similar (1)	1	
	Why ion drives maybe preferable		
	Any two from:		
	 less fuel required in total for example, 66 kg for a year thrust provided for longer/fuel lasts longer/accelerates for longer lower payload for initial launch/ion drive lighter (1) (1) 	2	[12]
3.	E = hf/photon energy is proportional to frequency (1) Photon energy must be greater than work function/minimum required to liberate electron (1) $hf = \phi + \frac{1}{2} \text{ m}\upsilon^2 \qquad \max E_k = \frac{1}{2} m\upsilon^2 \max = hf - \phi$ $E_k = (6.63 \times 10^{-34} \text{ J s} \times 1.70 \times 10^{18} \text{ Hz}) - 9.61 \times 10^{-16} \text{ J (1)}$	2	
	$= 1.127 \times 10^{-15} \text{ J} - 9.61 \times 10^{-16} \text{ J} $ (1)		
	$= 1.66 \times 10^{-16} \mathrm{J}$ (1)	3	[5]

4. Explanation of line spectra:

Specific frequencies or wavelengths (1)		
Detail, e.g. absorption/emission (1)		
OR within narrow band of wavelengths	2	
Explanation how line spectra provide evidence for existence or energy levels in atoms:		
Associated with particular energies (1)		

Electron transitions (1)

Discrete levels (to provide line spectra) (1)

5. Threshold wave: Electron requires certain amount of energy to escape from surface (1) This energy comes from one photon (1) Use of E = hf(1)(So photon needs) minimum frequency (1) Hence maximum wavelength OR use of $E = hc/\lambda$ (1) Max 4 Work function: $f = c/\lambda = 3.0 \times 10^8 / 700 \times 10^{-9} \text{ m}$ (1) $= 4.28 \times 10^{-14} \text{ Hz}$ (1) $E = hf = 6.63 \times 10^{-34} \text{ J s} \times 4.28 \times 10^{-14} \text{ Hz} = 2.84 \times 10^{-19} \text{ (J)}$ [Allow e.c.f.] (1) 3 Circuit : Circuit showing resistors only in series (1) Potentials labelled (1) [Use of potential divider – allowed] Resistor values 1: 1: 1 OR 1:2 (1) Max 2 Suggestion: Cosmic rays travel more slowly than light (1) 1 [10]

3

[5]

6.	Energy of photon of light		
	$E = hf = 6.63 \times 10^{-34} \text{ J s} \times 6.0 \times 10^{14} \text{ Hz} = 3.98 \times 10^{-19} \text{ (J)}$	1	
	Graph		
	Points correct $(\pm \frac{1}{2} \text{ square})$ (2)		
	Single straight line of best fit (NOT giving intercept below 4.5×10^{14}) (1)		
	Line drawn as far as f axis (1)	4	
	Value for <i>h</i>		
	Large triangle [at least 7 cm on K.E. axis] (1)		
	Gradient = e.g. $(6.05 - 4.55) \times 10^{14} / 1.0 \times 10^{-19} = 1.5 \times 10^{33}$ (1)		
	<u>$h = 1/\text{gradient} = 6.67 \times 10^{-34} \text{ J s}$ (1)</u>	3	
	Value of ϕ		
	Reading co-ordinates of a fixed point on graph (e.g. $0, 4.55 \times 10^{14}$) (1)		
	φ from equation, e.g.		
	so ϕ = frequency intercept $\times h$		
	= e.g. $4.55 \times 10^{14} \times 6.67 \times 10^{-34}$		
	$= 3.03 \times 10^{-19} \text{ J} (1)$	2	
	Explanation		
	Not enough energy [OR frequency too low]		
	For 2 nd mark, numerical/added detail required,		
	e.g calculation: $E = 6.63 \times 10^{-34} \times 4.5 \times 10^{14} \text{ Hz} = 2.98 \times 10^{-19} < \phi$		
	OR threshold frequency read from graph	2	
			[12]
7.	Description		
	Electron (near surface of cathode) absorbs photon and gains energy (1)		
	Work function is energy needed for electron to escape from surface (1)		
	Electrons released in this way are called photoelectrons (1)	3	
	Lowest frequency of radiation		
	$f_0 = E/h$ (1)		
	$= 2.90 \times 10^{-19} \text{ J}/6.63 \times 10^{-34} \text{ J s}$ (1)		
	$= 4.37 \times 10^{14} \text{ Hz} (1)$	3	
	Suitability of potassium		
	$\lambda = 3 \times 10^8 \text{ m s}^{-1} / 4.37 \times 10^{14} \text{ Hz}$ [use of lowest frequency] (1) 6.86 × 10 ⁻⁷ m [with suitable comment] (1)		
	OR		
	$f = 3 \times 10^8 \text{ m s}^{-1} / 4.0 \times 10^{-7} \text{ and } f = 3 \times 10^8 \text{ m s}^{-1} / 7.0 \times 10^{-7} \text{ [uses range of } \lambda] (1)$	2	
	$J = 1.5 \times 10^{14}$ Hz to 4.5×10^{14} Hz [with suitable comment] (1)	2	
	[Suitable comment – e.g. this is within range of visible light/almost		

all of the visible light photons will emit photoelectrons]		
Maximum kinetic energy		
Use of $E = hc/\lambda$ AND minimum wavelength (1)		
Max photon energy = hc/λ = 6.63 × 10 ⁻³⁴ J s × 3 × 10 ⁸ m s ⁻¹ /(400 × 10 ⁻⁹ m)		
$= 4.97 \times 10^{-19} \text{ J} \text{ [no u.e]}$		
Max k.e. = max photon energy – work function [or use equation]		
$= 4.97 \times 10^{-19} \text{ J} - 2.90 \times 10^{-19} \text{ J}$		
= 2.07×10^{-19} J [allow ecf if wrong wavelength used] [no u.e] (1)	3	
Why some photoelectrons will have less than this k.e.		
One point from:		
 photon energy might be transferred to electron below surface so some energy transferred to atoms on the way to surface hence electron leaves surface with less energy than max max is for electron from the surface 		
 Inax is for electron from the surface lower energy photon responsible for emission (1) 	1	[12]
Polymer		
Long chain (1)		
molecules / of atoms / monomers / units (1)	2	
Energy of photon of ultraviolet light		
$f = c/2.5 \times 10^{-7}$ (1)		
$= 1.2 \times 10^{15}$		
Use of $E = hf(1)$		
$6.63 \times 10^{-34} \times 1.2 \times 10^{15} = 8.0 \times 10^{-19} $ J (1)	3	
Process of ultraviolet absorption		
Energy level diagram with three or more lines used (1)		
Words: electron and photon in context (1)		
Arrow up/electron excitation when absorbing ultraviolet light (1)		
Arrow down to intermediate level or from intermediate level emits blue (1)	4	
Energy level diagram		
Energy level bands (1)	1	
Brightness of posters		
(Invisible) ultraviolet absorbed (1)		
(Re–)emitted as (visible blue) light (1)	2	[12]

8.

9. <u>Description of photon</u>

	Packet/quantum/particle of energy [accept $E = hf$ for energy] (1) (1)		
	[allow {packet/quantum/particle} of {light/e-m radiation/e-m wave} etc for (1) X] [zero marks if error of physics such as particle of light with negative charge]	2	
	Show that energy to move electron is about 8×10^{-20} J		
	W = QV(1)		
	$= 1.6 \times 10^{-19} \text{ C} \times 0.48 \text{ V}$		
	$= 7.7 \times 10^{-20} \text{ J} \text{ [no ue] (1)}$	2	
	Calculate efficiency of photon energy conversion		
	Efficiency = $(7.7 \times 10^{-20} \text{ J} \div 4.0 \times 10^{-19} \text{ J})$ [ecf] (1)		
	= 0.19 or 19 % (1)	2	
			[6]
10.	Explanation of 'excited'		
	Electrons/atoms gain energy (1)		
	and electrons move to higher (energy) levels (1)	2	
	[Credit may be gained for diagrams in this and the next 3 parts]		
	Explanation of how radiation emitted by mercury atoms		
	Electrons (lose energy as they) drop to lower levels (1)		
	Emit photons / electromagnetic radiation (1)	2	
	Explanation of why only certain wavelengths are emitted		
	Wavelength (of photon) depends one energy (1)		
	Photon energy depends on difference in energy levels (1)		
	Levels discrete / only certain differences / photon energies possible (1) (and therefore certain wavelengths)	3	
	Why phosphor emits different wavelengths to mercury		
	Different energy levels / different differences in energy levels (1)	1	
	Calculation of charge		
	Q = It (1)		
	$= 0.15 \text{ A} \times 20 \times 60 \text{s}$		
	= 180 C (1)	2	
			[10]
11.	Example of light behaving as a wave		

Any one of:

- diffraction
- refraction
- interference
- polarisation (1)

1

What is meant by monochromatic		
Single colour / wavelength / frequency (1)	1	
Completion of graph		
Points plotted correctly [-1 for each incorrect point] (1) (1)		
Line of best fit added across graph grid (1)	3	
<u>What $eV_{\underline{s}}$ tells us</u>		
Maximum (1)		
Kinetic energy of the electrons $/\frac{1}{2}mv^2$ of electrons (1)	2	
Threshold frequency for sodium		
Correct reading from graph: 4.3×10^{14} Hz (1)	1	
[Accept $4.1 \times 10^{14} - 4.7 \times 10^{14}$ Hz]		
Work function		
$f = hf_0 = 6.63 \times 10^{-34} \text{ J s} \times 4.3 \times 10^{14} \text{ Hz}$ (1)		
$= 2.9 \times 10^{-19} $ J [Allow ecf] (1)	2	
Why threshold frequency is needed		
• Electron requires certain amount of energy to escape from surface (1)		
• This energy comes from one photon of light (1)		
• $E = hf(1)$	Max 2	
		[12]
Meaning of energy level		
Specific allowed energy/energies (of electron in an atom)(1)	1	
Meaning of photon		
Quantum/packet/particle of energy/radiation/light/electromagnetic wave (1)	1	
Formula for photon energy		
$E_2 - E_1$ (1)	1	
$[\text{Allow } E_1 + E_{\text{photon}} = E_2]$		
Explanation of photon wavelengths		
Same energy change / same energy difference / energy the same (1)	1	
Meaning of coherent		
Remains in phase / constant phase relationship(1)	1	

12.